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Abstract We present a formulation of ab initio molecular dynamics with a mixed basis. The 
mixed basis is constructed by a plane-wave set and localized basis functions which are defined 
by spatially localized functions. The basis functions are otthonormalired with each other, and 
the equations of motion for wavefunctions of electrons are simplified. Forces acting on atoms 
include the Pulay tem, which are explicitly represented in the present formulation. This method 
is tested on diamond and applied iron as a first step in studying the effect of spin polarization. 

1. Introduction 

Ab initio molecular dynamics proposed by Car and Paninello [ I ]  is a powerful method 
which unifies the calculation of the electronic states and the molecular dynamics, and is 
now widely applied for semiconductors or simple metals. The use of pseudopotentials with 
a plane-wave basis set plays an important role in the calculations for these materials by 
means of this method. Plane-wave expansion can work well when the pseudopotentials are 
used simultaneously, because the pseudopotentials are much weaker than the real Coulomb 
potentials, especially for most semiconductors and the simple metals. For first-row elements 
and transition metals, however, this method must be applied with some care, because these 
elements have strong pseudopotentials [2]. One way to calculate the electronic properties 
efficiently for these elements is to use relatively soft pseudopotentials. Calculations with 
an ultrasoft pseudopotential [3] have been reported for molecular oxygen [4] and liquid 
copper [5]. Another method of calculation is to use a localized basis set and nom-conserving 
pseudopotentials. We employ here the latter, in particular a mixed-basis appmach. 

A mixed-basis approach, which combines plane waves and localized functions in the 
basis set, is introduced to efficiently treat the atomic-like wavefunctions in solids [&SI. 
In [6] the Bloch sums of the Gaussian orbitals are used as the localized part of the basis set. 
This is the reason why the Hamiltonian and the overlap matrix can be analytically expressed 
using the Fourier transform of the Gaussian orbitals which have the analytic representation 
of the Fourier transform. However, this choice of the localized part of the basis set leads to 
solving of generalized matrix eigenvalue problem, which includes the Hamiltonian matrix 
and the overlap matrix of the basis. 

While a mixed-basis formalism is appropriate for calculation of the materials 
incorporating localized d electrons, it is more complicated and requires increasing calculation 
time. In order to overcome this difficulty, there is a way to construct an orthonotmalized 
basis set from a mixed-basis set. This was proposed by Jansen, Sankey and Klein (JSK) [9] 
several years ago. JSK constructed an orthonormalized mixed-basis set from plane waves 
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and pseudoatomic orbitals (PAO) to represent the wavefunctions that have atomic-orbital 
features. It is noted that PA0 employed by JSK are computed self-consistently for the 
pseudopotentials of a free atom. Rappe and co-workers [IO] have pointed out that the JSK 
mixed-basis set is not overcomplete and takes advantage of iterative minimization schemes 
for electronic and atomic degrees of freedom. 

We note here that the localized functions, which are the origin of the localized part 
of a mixed-basis set, are only used as constituents constructing a basis. In principle, one 
can choose any functions to constitute a basis. Using this property of the mixed basis, we 
present a novel mixed-basis approach which is suitable for an ab initio molecular dynamics 
calculation. The key idea of our orthonormalized mixed-basis approach is to make use of 
a momentum-space representation for localized functions. This approach leads to a simpler 
formulation and more efficient calculation for the electronic states of the system if the 
localized function contains an analytic expression of the Fourier transform. In addition, we 
can explicitly represent the Pulay term of the force acting on atoms. 

We applied the mixed-basis approach for ab initio molecular dynamics to diamond as 
a first-row material, because the properties of diamond were studied by experimental and 
theoretical methods [ 11.121 many years ago. This method was also applied to iron, as a 
transition metal, which may be the first trial using this approach for studying materials with 
non-zero spin polarization. 

This paper is organized as follows. In section 2 we describe the construction of the 
mixed basis. In section 3 we present the formulation for ab initio molecular dynamics 
with the mixed-basis set described in the previous section. In section 4 the force formula, 
especially the Pulay term, are given. In section 5 we calculate the electronic structure and 
the lattice dynamics of diamond and iron. Finally, in section 6 we summarize our results. 
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2. Mixed basis 

A mixed-basis set is introduced [6] to express effectively the wavefunctions of the electrons 
in a crystal that have localized features. The mixed-basis set consists of a localized part and 
a delocalized (plane-wave-like) part, and is suitable for representing both localized states 
and extended states of the system. However, a mixed-basis set is overcomplete and not 
orthonormal, in general. For this reason, calculations based on a mixed basis are more 
complex and require a great deal of computer time. To avoid this diffculty, we introduce 
an orthonormlized mixed basis which is constructed from plane waves and a localized 
basis. We expand the wavefunction of the electron with band index j ,  wave vector k and 
spin U as follows: 

where Q is the volume of the unit cell and GI is the reciprocal lanice vector. The symbol 
s, means that the pth basis function is connected to the sth atom in the unit cell. The 
orthonormality conditions of the basis set are represented by 
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where 

and 

(ww) = ( P h p ( T )  (4) 

which is the localized part of the mixed-basis set. 
The mixed-basis set in the present approach is constructed as follows. In the first step, 

we choose spatially localized functions f, (p = 1, . . . , m) and generate the Bloch function 
for each k vector in the reduced Brillouin zone: 

where T is the Bravais-lattice vector and & is the position vector of the sth atom in the 
unit cell. The symbol &, means the localized function f,, is linked to the sth atom. In the 
second step, we orthogonalize the function, 6kkspr to all plane waves with energy less than 
or equal to a cut-off energy, Gpw. This can be easily done by using the Fourier expansions 
of the Bloch functions defined above. Introducing a cut-off energy Gmax (> Gpw)  for the 
Fourier expansions of the Bloch functions, the function orthogonalized to the plane waves 
is given by 

The Fourier coefficients &(k + Gz) are 

&,,(k + G2) = A j , ( k  + Gz)e-iGz’R. 

f;,(k + G )  = n J d r  e-i(kta‘r f&(r). 

(7) 

where &(k + G)  is the Fourier coefficient of the localized function: 

(8) 

In the third step, the functions (6) are orthonormalied with each other by diagonalizing the 
overlap matrix. The overlap matrix Ssp:s,p, is defined as 

Ssp;s’p’ = ( 4 k p  I 6kS,,,). (9) 

The unitary matrix U, which diagonalizes the overlap matrix, is obtained by solving the 
eigenvalue problem for the overlap matrix 

U S U t =  D (10) 

where D is the diagonal matrix whose elements are given by 

Dsp;s‘pr E &&,,;s)fi< (11) 
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and A,, is the eigenvalue of the matrix S. Note that the size of the overlap matrix S is 
Mm, where M is the number of atoms in the unit cell. This size of S is so small that there 
is practically no additional time for the calculation of the diagonalization of S. We also see 
that the diagonalization does not take so much time when treating a larger system, since 
the size of S depends linearly on M ,  not on the number of bands. Then the localized part 
of the orthogonalized basis set is generated by 

T Kishi and S Itoh 

where 

We note that there are no restrictions on choosing localized functions. While JSK 
have taken pseudoatomic orbitals as localized functions, we consider weighted Gaussian 
functions here [6]. The reason is that the Fourier transforms of these functions possess 
analytic representations and this is also expected to decrease the error in the calculation. 
The Gaussian-type orbital 

r' exp(-Ar2)Yl,(+) (14) 

(15) 

has the Fourier coefficients 
1 

-a3'2A-'-3/2(-iG/2)' exp(-Gz/41)fi,(G) 
Q 

where f i m  are spherical harmonics, 

3. Mixed-basis approach in ab initio molecular dynamics 

Ab initio molecular dynamics introduced by Car and Parrinello [ 11 unifies an electronic- 
states calculation based on density functional theory and molecular dynamics. In density 
functional theory, the charge density which minimizes the total energy of the system is 
the exact ground-state density and the wavefunctions of the system are given by the self- 
consistent solution of the KohnSham equations (for a review, see [ 131). In the ab initio 
molecular dynamics approach, a fictitious time for wavefunctions of electrons is introduced 
and the system evolves obeying a fictitious dynamics. This dynamics is defined by a 
Lagrangian whose potential energy is given by the total energy of the system in density 
functional theory. The total energy per unit cell [ 141 is given by 

E,,, = 1 dk wj"$..u - EH t M.%.I(YI + AE,, + YE (16) 
J . 0  

where 
spin a 

is the KohnSham eigenvalue, tu," is the occupation number of the j th  band with 

(17) 
E ~ = - j d T v ~ p  1 

2 
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and 

The density of the electron p is given by 

The expressions t,, and SZ. mean 

1 tu., = - 2s 
M unit -11 

and 

s2 a, = 

respectively. 
In the orthogonalized mixed-basis approach, the total energy of the system can be 

represented by the coefficients c;(k+G) and dYbr of the expansion of the wavefunction (1). 
We can express the Kohn-Sham eigenvalues which appear in the equation (16) as 

where cc means the complex conjugate of the second term of (24). The symbol 71 is the 
Hamiltonian of the system defined by 

The sums of the first and second terms in (24) run over the reciprocal lattice vector GI or 
G;,  the absolute value of which is less than Gpw.  

The Car-Parrinello Lagrangian which defines the fictitious dynamics is represented in 
the form 

where p. is the fictitious mass of the electron, Ms is the mass of the sth atom and the third 
term is given by equation (16). The last term in equation (26) is introduced to conserve the 
orthonormality between the wavefunctions and Ai j  is the corresponding Lagrange multiplier. 
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The equations of motion of the wavefunctions are derived from the Car-Parrinello 
Lagrangian (26). The minimization of the total energy is achieved by the time evolution 
determined by these equations as the system is gradually cooled. Here we employ a different 
approach to minimize the total energy of the system, that is, the direct minimization of the 
total energy by the steepest-descent method, which can be formulated in terms of first-order 
differential equations in the fictitious time as 

The equations for the expansion coefficients CP;, and d&, of the wavefunction are given by 

We note that the derivatives of the coefficients Q and d&,, are not included simultaneously 
in each equation of motion because of the orthonormality of the basis. Therefore we can 
easily treat these equations. 

The equations of motion for a tom in the system are also derived from the Car-Paninello 
Lagrangian. These are the second-order differential equations 

We solve these equations to study the motions of atoms. 
To calculate the matrix elements of the Hamiltonian which appear in equations (24), 

(28) and (29), we remember the localized part of the basis set is constructed in the form of 
Fourier expansions. Using equations (12) and (13), all matrix elements can be. represented 
in the reciprocal space. The complete expressions of the matrix elements of the Hamiltonian 
are obtained as follows: 

( k + G ~ l X l k + G ; )  = Ik+G11~6~, ,c ;  +VL(G; -Gl)+V,vr(k+G~,k+G;)  (31) 

and 
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Here we use the representation of the Hamiltonian: 

n = -v2 + v, + v,, (34) 

where VL and V,, are the local and non-local parts of the potential, respectively. The local 
potential VL consists of the H m e e  potential, the exchange-correlation potential and the 
local part of the pseudopotential. The non-local potential is equal to the non-local part of 
the pseudopotential. 

The use of the above expressions of the mahix elements has a great advantage in 
calculation. We need not evaluate the matrix elements of the potentials for the localized 
part of the mixed-basis set in the real space. Only the matrix elements of the potential in 
the reciprocal space with energy less than G,,, are required. In practice, we can make 
good use of fast Fourier transforms (FFT) for evaluating the matrix elements. This leads to 
suppression of the increase in CPU time. 

4. Hellmann-Feynman and May forces 

In the force calculation, we need to evaluate the Hellmann-Feynman force as well as the 
Pulay term due to the dependence of the basis functions on the positions of atoms. The 
force acting on atom s is given by 

where I@) denotes a state of the system, the first term of the right-hand side of this equation 
is the Hellmann-Feynman term and the second term is the Pulay term. 

In the formulation which we adopt here, the Pulay term can be explicitly represented and 
then exactly calculated. By the definition of the force (35). and using the expression of the 
total energy (16). we obtain explicit representations of the force. The Hellmam-Feynman 
force is given by 

To represent the Pulay term, we have to know the derivative of the wavefunction. 
Since the localized part of the basis set depends on the positions of atoms in the mixed- 
basis formalism, this term is not identical to zero. The derivative of the wavefunction is 
expressed as 

using the Fourier expansions of the localized basis (12). The Fourier coefficients $Zap of the 
localized part of the basis set are given by equation (13). Note that the unitary transformation 
U, which appears in the Fourier coefficients (13). is defined for the fixed set of the position 
of atoms (Rs), and this includes [&) as parameters. Then we can explicitly represent the 
derivative of the coefficients as 

Substituting this equation into the second term of equation (35). we get the formula for the 
Pulay term of the force. 
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5. Applications 

5.1. Electmnic structure of diamond 

In this section, we apply the method described above to carbon with diamond structure. 
Since the pseudopotential of carbon is deeper than that of silicon and there are many 
theoretical studies, it may be thought as an appropriate example for testing our mixed-basis 
approach. 

For the mixed-basis calculation, we take a weighted Gaussian with spherical symmetry 
as a spatially localized function 

T Kishi and S Itoh 

f*=l(r) = rf exp(-hr*). (39) 

Here we put I = 2 to represent the localized feature of the wavefunction effectively, though 
the carbon atom does not have orbitals with d symmetry. The Fourier coefficients of 
equation (39) is given by 

where N is the normalization constant 

In the calculation we use the generalized norm-conserving pseudopotentials of Hamann [ 151, 
the Weinman-Bylander form of the pseudopotential [15,16], and the exchange+orrelation 
potential of Perdew and Zunger [17]. We fix the cut-off energy as G,, = 55.4Ryd. 
the fictitious mass for the wavefunction of the electron is set to pe = 300au. and the 
time step to Af = 1Oau. As a unit cell, a simple cubic supercell with a lattice constant 
a = 3.57A is taken and k-point summations are restricted to the r point. We stop iteration 
for minimization of the total energy with the fixed atoms if the convergence rate E of the 
total energy is less than 1.0 x IO-'. The convergence rate E is defined by 

where E(n)  denotes the total energy of the system in the nth iteration. 

Table 1. C~l-off energy dependence of the total energy. The cuf-off energy Gmax for the Pourier 
expansion is fixed as 55.4Ryd. 

G,, (Ryd) E,., CRyflatom) 
30.0 -10.94 
40.0 -11.05 
50.0 -11.09 
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In table 1 we show the dependence of the total energy per atom on the cut-off energy 
G,, for the calculation based on the plane-wave basis. This indicates that the total energy 
almost converges for the cut-off energy G p ,  = 40Ryd. and we fix the cut-off energy as 
this value in the following calculation. We note that the cut-off energies G,, and G,,, 
correspond to 1357 and 2103 plane waves, respectively. This means that the computer 
memory required for the coefficients of the wavefunctions is smaller than that required 
for the plane-wave coefficients as a whole, because we have only to evolve the 1357 + 1 
coefficients. To determine the equilibrium lattice parameter for diamond, we calculate the 
total energy for four different lattice parameters and fit data with a parabolic curve. In 
figure 1 we show the total energy calculated and the fitting curve. The equilibrium lattice 
parameter is obtained as 3.72A and the experimental value is 3.57A. In the calculation 
below the lattice constant is fixed as the calculated equilibrium value. In  figure 2 we display 
the fictitious time evolution of the total energy of the system for the cut-off energy of the 
plane wave G,, = 40Ryd with the equilibrium lattice parameter determined above. 

-1 0.95 7 
Figure 1. Calculated total energies against 
lattice parameters. We determine the q u i -  
librium lattice parameter from a parabolic 
fitting to the total energies. The arrow in- 

6.6 6.8 7 7.2 7.4 dicates the equilibrium value of the lattice 

.g -11.1 w 
-11.15 

lattice parameter (a.u.) pantmeter. 

Figure 2. The time evolution of the total energy of 
the system. The cutdff energy for the plane-wave 
basis C,, is 40Ryd and the cut-off energy C,, is 
55.4 Ryd. The total energy almost converges over 
ten iterations. 
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The Kohn-Sham eigenvalues are tabulated in table 2. The eigenvalues calculated 
by the plane-wave basis [ I l l  with the Hamann-Schluter-Chiang pseudopotential I21 and 
LAPW [I21 are also tabulated for comparison. Since we use a simple cubic supercell in 
the calculation, the eigenvalues at the r point and the X point for the Brillouin zone of the 
face-centred cubic lattice appear at the r point of the Brillouin zone of the supercell. The 
degeneracies of the eigenvalues for the supercell from the lower-energy side are I ,  6.6 and 
3, respectively. 

Table 1. Koh-Sham eigenvalues. The eigenvalues calculated by plane-wave (17) basis with 
HSC pseudolvQtentiaJ and LAPW m also tabulated for comparison. 

This paper PW LAPW 112) 

r, -22.21 -21.45 -21.36 

XI -13.28 -12.65 -12.61 
x4 -6.61 -622 -5.82 

rZJf 0 0 0 

Next we study the lattice dynamics of diamond. We focus, in particular, on the optical 
phonon at the r point where the longitudinal and transverse modes are degenerate. The 
trajectories of the atoms are generated by solving the equation of motion (30). The initial 
displacement of each atom is determined for the velocities of atoms to give a Maxwell 
distribution at a fixed temperature and the temperature of the system is kept at IOOOK 
during the molecular dynamics calculation. In this calculation we omit the Pulay term for 
the non-local potential -2Re((a@/aR.JVNLl@)), because the Pulay term of the non-local 
potential is much smaller than that of the local potential. In figure 3, the motion of an 
atom along the (1 1 I )  direction is depicted. This figure indicates that the optical mode has 
a frequency of 51.7THz, which is comparable to the experimental value 39.96THz [18]. 

0.01, 

Figure 3. Motions of an atom of diamond 
with ( 1 1 1 )  mode. The frequency is about 
20 ilerations (one iteration conesponds to 
4.8 x 1O-I6s). ' h e  displacement has units 
of the lattice caw". The variation of the 

I amplitude of the motion is influenced by the 
0 20 40 60 80 100 120 initialst?tesforthe;ttomsanddisappeYsin 

-0.01 1 

iteration the longtime limit. 

5.2. Electronic structure of iron 

The orthonormalized mixed-basis approach is applied to iron which has non-zero spin 
polarization. Since the pseudopotential of the iron atom is much stronger than most 
semiconductors, many basis functions are needed in the plane-wave basis approach. In 
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the orthonormalized mixed-basis approach many plane wavefunctions are also required, but 
the coefficients of the wavefunctions are far fewer than the number of plane waves. This 
reduces the amount of the computer memory and CPU time used in the calculations. 

To calculate the electronic structure for iron, which has a body-centred cubic (bcc) 
structure, we use four special k points in the Brillouin zone summation, and fix the cut-off 
energy to Gmax = 300Ryd and G,, = ISORyd, which correspond to 39223 and 13949 
plane waves. Though we must evolve the 13 149 + 1 coefficients of the wavefunctions, 
this number is smaller than all 39223 plane-wave coefficients. In this case we need only 
113 of the computer memory for the coefficients in comparison with the plane-wave basis 
calculation, and this leads to less computational time used in the calculation. Iteration is 
stopped if the convergence rate E of the total energy is less than 5.8 x 

In order to determine the lattice constant we cany out the total energy calculation for 
the systems with the lattice constants 2.80A. 2.85A and 2.90A. Figure 4 shows the total 
energies as a function of the lattice parameter. The equilibrium lattice constant is determined 
from parabolic fitting and is 2.854A. as indicated by the arrow in the figure. This value 
is good agreement with the experimental value 2.866A. Unfortunately, the bulk modulus 
obtained from data is very much larger than the experimental value. It is supposed that 
the core correction for the pseudopotential is not taken into account here. The absence 
of the correction leads to an overestimation for the exchange<orrelation energy. It has 
been indicated [I91 that core corrections play an important role in the 3d transition metals 
obtaining their qualitative properties. 

-37.5 

I I 

5.2 5.3 5.4 5.5 5.6 
lattice constant (a.u.) 

Figure 4. Calculated total energies for three lanice panmeters and the parabolic fining of these 
values. The armw indicates the ia!tice wnstant that corresponds to the minimum of the total 
energy derived from the fining curve. 

The magnetic properties of iron as well as the electronic structures are interesting. The 
magnetic moment per atom converges more slowly than the total energy along the fictitious 
time evolution of the system. Continuing iteration to achieve the convergence rate fixed 
above for the total energy, we obtain 2 . 4 4 ~ ~  for the magnetic moment per atom with a 
lattice parameter 2.85 A. It is found that the calculated value of the magnetic moment is 
slightly larger than the experimental value. This result comes from using a few IC points to 
evaluate the Brillouin zone summation, since the magnetic properties depend on the Fermi 
surface. It is also supposed that we employ the spherical symmetric functions (39) as the 
localized function which generates the localized part of the mixed-basis set. 
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Figure 5. Contour of the spin density of iron on the (1 10) plane. The full contours represent 
the positive densities which start h m  0.001e au-’ to 0.256e a K 3  spacing by a factor of WO in 
each contour. The broken contours nre the negaIive densities which sfm from -O.Wlcau-’. 
The contours o f m  densify nre drawn by thick curves. 

The spin density on the (1 10) plane of the bulk iron is shown in figure 5. This figure 
clearly exhibits the anisotropy of the spatial distribution of the spin density. We also find 
that the areas of negative spin density appear in the interstitial region, originating from the 
spin polarization of the 4s electron. It is known [20] from measurement of the magnetic 
form factor by neutron diffraction that iron has these properties. The spin density evaluated 
here is consistent with experimental data. 

6. Conclusions 

We have presented a novel mixed-basis approach of ab initio molecular dynamics. In this 
approach, the mixed basis consists of plane waves and the Bloch function of localized 
functions connected to atoms in the unit cell. Localized functions that have analytic 
representations of the Fourier transform for the precise calculation are chosen. The functions 
in the mixed-basis set are orthonormalized with each other. 

The equations of motion for the coefficients of expansion of the wavefunction by the 
mixed basis have been derived tiom the Car-Parrinello Lagrangian. These equations 
have a form that can be easily treated, because the derivatives of the coefficients are 
separated for each equation. All matrix elements of the Hamiltonian are represented by 
the Fourier components of the potentials and the localized part of the basis set. This 
representation has an advantage in calculation of the matrix elements using FFT. Because 
of the orthonormalization conditions for the basis set, the expressions of the matrix elements 
are simpler than the non-orthonormal basis. We have also obtained an explicit expression 
for the Pulay term of the force in this approach. This is due to the expressions of Fourier 
expansions for the localized part of the basis set. 

We applied the mixed-basis approach to calculate the electronic structure and the lattice 
dynamics of diamond and iron. For diamond, properties such as the lattice constant, bulk 
modulus and phonon frequency are in good agreement with experimental data. We have 
demonstrated an efficient calculation for materials with spin polarization, in particular bcc 
iron. The lattice constant and the magnetic moment calculated here are comparable to those 
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measured in many experiments. In these calculations the mixed-basis approach leads to a 
decrease in memory usage in computers and in CPU time. 
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